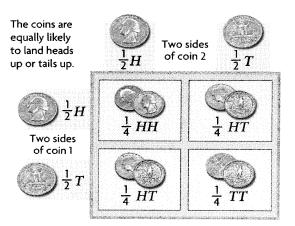
of page H's

Genetics Fill-in Notes 6.5 Traits and Probability

Notes

2. Key Concept

1. Objectives: Students fillout -

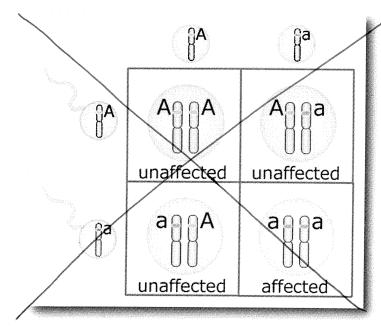

1. Key Concept: The inheritance of traits follows the rules of .

2. Vocabulary

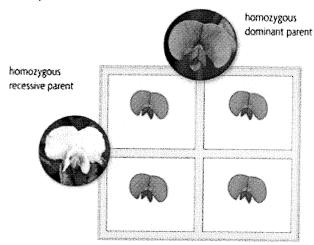
2. Vocabulary

- <u>Punnett Square</u> model for predicting all possible genotypes resulting from a cross, or mating
- Monohybrid Cross cross, or mating, between organisms that involves only one pair of contrasting traits
- <u>Testcross</u> cross between an organism with an unknown genotype and an organism with a recessive phenotype
- <u>Dihybrid Cross</u> cross, or mating, between organisms involving two pairs of contrasting traits.
- Law of independent assortment Mendel's second law, stating that allele pairs separate from on another during gamete formation
- **Probability** likelihood that a particular event will happen

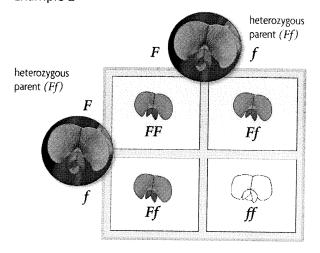
3. How can heredity be calculated using probability?


3. Heredity patterns can be calculated with

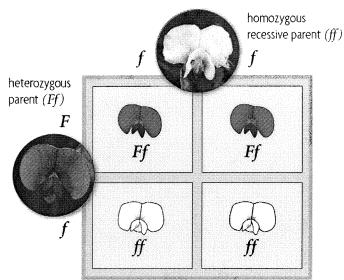
(1HH:2H	T:1TT)	
	(25%) or	as a
Probability can also be s	hown as a	
such as	and 	
		events
an	number of occu	rrences
of		, not
Probability predicts an _		····
something will happen.		
Probability is the		that
	something will happen. Probability predicts an of an Probability applies to such as Probability can also be s	Probability predicts an of


The probability of getting HT is

Probability = Number of ways a specific event can occur Number of total possible outcomes


4. What is a Punnett Square?

5. What is a monohybrid cross? Example 1



Example 2

4. Pı	unnett squares illustrate genetic crosses
•	A square is a system for
	predicting the possible of
	offspring resulting from a cross.
	 The axes represent the possible
	of each parent.
	 The boxes show the possible
	of the offspring
•	The Punnett square yields the of
	possible genotypes and
_	
too	mony Dictives
,	mony pictures too busy.
	too busy.
5. A ı	monohybrid cross involves one trait
•	crosses examine the
	inheritance of only one specific trait
•	Example 1:
	female is homozygous dominant ()
	male is homozygous recessive ()
	_X
•	Results
	 The possible Genotypes – all
	()
	o Possible Phenotypes –
•	Example 2
	O Parents:Heterozygous () x hybrid ()
	 What is the ratio of the possible offispring's
	genotypes?
	•: or
	25% FF, 50% Ff, and 25% ff
	 What is the ratio of the possible offspring's
	phenotypes?
	purple : white or 75% purple and
	25% white

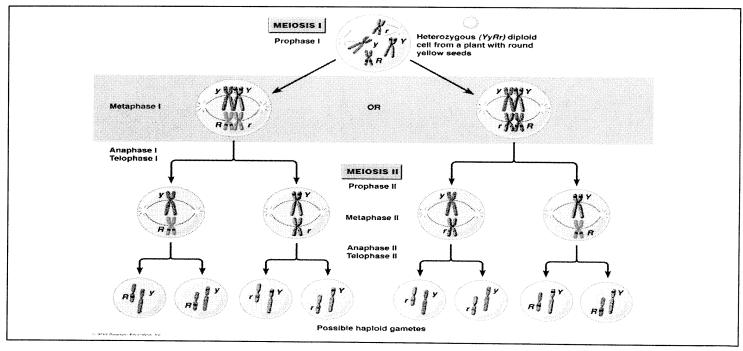
6. What is a testcross?

6. Testcross

- A _______ is a cross between an organism with an unknown genotype and an organism with the ______ phenotype
- Cross an unknown genotype purple parent (F___) and white parent (ff)

STOP - too much infermetion for

7. What is a dihybrid cross?


F ₁ generation	YR	Yr Yr	Rr yR −	yr		
YR	YYRR	YYRr	YyRR	YyRr		
Yr	YYRr	YYrr	YyRr	Yyrr		
YyRr y R	YyRR	YyRr	yyRR	yyRr		
yr	YyRr	Yyrr	yyRr	yyrr		

F₂ generation

1 day.

- 7. Dihybrid cross A cross that involves two traits
 - Mendel's dihybrid crosses with heterozygous plants yielded a ____: ___: ___ phenotypic ratio
 - Mendel's dihybrid crosses led to his second law, the law of _____
 - The law of independent assortment states that allele pairs separate independently of each other during meiosis

* Introduct hihybrid next day after practice of menhybrid.

write out Forl 1. First **Dihybrid Cross** 2. Dut side Example: AaBb x AAbb Step 1: FOIL out the Alleles 3. Inside 4. Last Parent 1 Allele First (1) = AB2 Make more Outside (2) = Abmodel this, remove Letters. Inside (3) = aBClear w/ #'s Last (4) = abStudent practice Parent 2 Allele First (1) = * Have students Outside (2) =Figure out offspring Inside (3) =model X-axis Last (4) =after exis are written Trait Parent 1 Parent 1 Parent 1 Parent 1 Allele Allele Allele Allele Parent 2 Allele Parent 2 Allele Parent 2 Allele Parent 2

Student practice

Allele